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Abstract

Climate change is poised to alter wetland ecosystems through changes in temper-1

ature and precipitation patterns, compounding the already pronounced influence2

of human-driven wetland development. In this context, policymakers and environ-3

mental managers would benefit from accurate wetland valuations to guide their4

decision-making, as their choices regarding this critical natural resource directly5

impact flood mitigation efforts, biodiversity conservation, and economic activity.6

This paper introduces a novel multimodal causal framework for producing location-7

specific ecosystem valuations at a national scale to be used in cost-benefit policy8

analysis. It leverages recent advances in estimating heterogeneous treatment effects9

to flexibly determine how the expected impact of ecosystem-level changes—such10

as wetland loss via development—varies conditional on high-dimensional and11

multimodal measures that characterize the complex interactions between human12

and natural systems such as aerial satellite imagery, weather sequence data, land13

cover classifications, and water surface networks. From this effort, we aim to create14

a national database of location-specific wetland valuations in an approach that can15

be readily extended in estimating the effect of other interventions on ecosystems.16

We also plan to generate open-source feature embeddings for each U.S. wetland,17

embeddings that can be used to address other climate-related causal questions as18

well.19

Ecosystems like wetlands are vital to human welfare, yet often lack market prices, complicating20

efforts to integrate environmental considerations into policy and economic decisions around climate21

change [Bar13]. Despite growing interest in quantifying ecosystem values, large-scale estimates are22

scarce, even though improving benefits transfer methods is recognized as necessary for increasing the23

role of ecosystem valuations in guiding environmental decision-making [MO09]. In this paper, we24

introduce a novel multimodal causal framework to generate location-specific ecosystem valuation25

at a national scale. Our key innovation lies in combining advances in computer vision and causal26

inference to leverage vast quantities of data characterizing natural and human systems—including27

satellite and aerial imagery, weather models and observations, geophysical and hydrologic data,28

administrative records, and more—to reliably model how ecosystems contribute to human well-being29

as a function of local systems.30

We demonstrate this framework to assess the value of wetlands for flood protection. We first establish31

benchmarks using conventional approaches such as causal forests [WA18] to estimate Conditional32

Average Treatment Effects (CATEs), which characterize how local factors influence wetland flood33
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protection value. However, recognizing the limitations of traditional tabular data in capturing34

spatial heterogeneity, we extend our framework to incorporate rich, multimodal data, including35

natural phenomena maps, human activity indicators, and satellite imagery. This approach aims to36

improve valuation precision and quantify complex environmental interactions. Our ultimate goals37

are to produce a national database of location-specific wetland valuations supporting conservation38

decisions and to generate open-source, national-scale feature embeddings for broader causal analysis39

in ecosystem valuation.40

In what follows, we first characterize the problem tacked in this research in §1, discuss methodological41

questions in §2, before presenting a pilot analysis in §3 before concluding with a brief discussion.42

1 Problem Formulation43

As a starting point, we note that our empirical approach has two primary objectives: (i) to estimate44

the causal effect of ecosystem changes on indicators of human well-being and (ii) to estimate45

heterogeneous effects that allow for rich variation in ecosystems across space and time. Critically, the46

approach needs to be generalizable across a wide variety of settings: we want to be able to apply the47

same general framework to produce location-specific estimates for any intervention on ecosystems for48

which sufficiently rich data are available—enabling investigation into other policy questions related49

to the changing climate and the environment.50

We can formalize the problem as follows: we aim to estimate the impact of an intervention, e.g.,51

ecosystem loss, (Di), at site i on indicators of human well-being (Yi), taking into account all52

observable characteristics of the site (Zi). One formulation of this general model is53

Yi = β(Zi)Di + f(Zi) + ϵi (1)

where β(Zi) denotes the site-specific impact of ecosystem loss on well-being. Here, β(Zi) is a54

flexible function of observed characteristics, Zi, such that we allow for rich heterogeneity in the55

parameter estimate while also keeping intact the interpretation of β as the per unit impact of ecosystem56

loss on human well-being. We specify the impact of Di on Yi linearly for simplicity—in practice,57

this relationship will be specified flexibly using the causal machine learning techniques described58

below.59

While the approach is general, in our application here, the outcome variable, Yi, describes property60

damages from flooding, which we measure using flood insurance claims from the National Flood61

Insurance Program (NFIP). The treatment variable, Di, is the conversion of wetlands to developed62

area, measured in log hectares (hereafter “wetland development”). We measure wetland development63

using data from the Coastal Change Analysis Program (C-CAP) land cover product. The treatment64

effect, β(Zi), measures the elasticity between wetland development and property damages from65

flooding as a function of observable characteristics, Zi.66

One innovation of this project is that Zi will not only be high-dimensional, but also multimodal67

[Che+20], containing sources such as, Ii denoting aerial imagery; Ni describing natural systems (e.g.,68

maps of land cover, flood zones, elevation, the water surface water network, soil types); Hi describing69

human systems (e.g., the location and values of homes, adoption of flood mitigation measures); and,70

Wi containing weather observations and climate statistics (e.g., precipitation, hurricane exposure).71

The set of all covariates is denoted by Zi = {Ii,Ni,Hi,Wi}.72

Figure 1 shows several of these data layers at two sites in Miami-Dade, Florida. Taking full advantage73

of the different modalities depicted here is the core methodological challenge taken up in this research.74

§SI.1.1 provides further information about each data modality.75

In our general framework, we will employ double machine learning (DML) and R-Learner methodolo-76

gies [NW21] to estimate the causal effect of ecosystem loss on indicators of human well-being. DML77

is a procedure for estimating causal effects in observational data in the presence of high-dimensional78

or highly complex confounders [Che+18]. DML splits the estimation of causal effects into three79

prediction tasks that rely on a decomposition proposed by [Rob88] to estimate parametric components80
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in partially linear models (one for outcome, treatment, and treatment effect). See §SI.1.2 for details;81

we next turn to the machine learning methods required for this approach in the multimodal ecosystem82

context.83

2 Methods84

We plan to design, train, and deploy competitive machine-learning models for the DML prediction85

tasks. We face several methodological challenges. First, the models must input multimodal data, Zi.86

Hence, we need to build a model that takes in inputs of varying spatial and temporal resolutions and87

learns to draw connections across the modalities. In addition, we want to use machine learning models88

that capture outputs differing in their character: specifically, while two of the DML models predict89

treatment and outcome as directly observable quantities, the third is learned through minimizing a90

causal loss.91

Unified Data Representation Using Self-Supervised Learning. The first challenge to model develop-92

ment is that the input modalities differ significantly in how they are captured and stored, generating93

significant challenges due to the multi-phase, resolution, and source nature of these data [Men14].94

To develop a model that processes these diverse inputs to output a single value, we will design95

unified representations integrating the spatial and temporal resolutions of our input data. Using96

self-supervised learning techniques, we will transform our input data into a high-dimensional tabular97

form within a unified representation space. Specifically, we will map input measurements to discrete98

latent codewords, forming a codebook learned purely from the data by minimizing reconstruction99

loss on a masked portion of the spatiotemporal arrays [FLH+22]. Consequently, all components of Zi100

will be mapped to a latent codeword of fixed dimension d using the corresponding codebook for that101

modality (where the codebook represents a collection of d-dimensional vectors). A benefit of using a102

discrete, as opposed to continuous, latent space is that the discrete approach facilitates interpretability103

in the resulting representation (as latent features are characterized by presence or absence, as opposed104

to real-valued magnitudes) [TYG24].105

Network Architecture. A related modeling challenge relates to appropriately capturing complex106

interactions within the input data that could lead to a robust and high-performing model using unified107

data representations. Unlike traditional convolutional neural networks (CNNs) that are limited by108

their fixed receptive fields, transformers can attend to any part of the input sequence, regardless of109

distance. This global attention mechanism is crucial for our task, where, e.g., the impact of wetland110

loss in one area may affect flood damages in distant, hydrologically connected regions. Transformers111

thus enable reasoning across various data modalities across space and time. See §SI.1.3 for training112

details.113

3 Pilot Results & Conclusion114

We present pilot results in Figure 2 valuations derived from tabular covariates. This figure shows the115

subwatershed-level estimates of CATEs (elasticities between wetland development and per hectare116

flood insurance claims) in panel a and the project impacts (effect of a 1% increase in wetland117

development on flood insurance claims, measured in log claims per hectare) in panel b. The figure118

also presents histograms of the estimated CATEs and projected impacts in panel d, along with a119

validation exercise showing the group average treatment effects (GATEs) for each quartile of the120

CATE distribution. The results are promising in that there is a notable heterogeneity signal present121

in the data, heterogeneity that will be further explored using the multimodal approach developed122

next. In this next research phase, we will expand these results to the multimodal case, resulting in a123

national database of location-specific wetland valuations, along with embeddings derived for each124

U.S. wetland.125

In conclusion, in the context of climate change, decision-making critically depends on high-quality126

estimates of the costs and benefits of different actions taken in the context of competing policy127

priorities and limited resources. The approach here, we hope, will provide useful information to128

decision-making this critical wetland resources under threat from changing climactic conditions. □129
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Figure 1: Example of two wetland sites in Miami Dade, FL. Site 1 (TOP) is a residential area along
the coast. Site 2 (BOTTOM) is an inland agricultural area. Each column shows a different data layer (LEFT to
RIGHT): aerial imagery, wetland polygons and types, the location and value of properties, flood zones, land
cover, and elevation. These are just a few examples of the inputs our method will consider.
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Figure 2: Pilot analysis of wetland flood mitigation services in Florida subwatersheds. TOP ROW
shows subwatershed-level estimates of CATEs (elasticities between wetland development and per hectare flood
insurance claims) in panel a and the project impacts (effect of a 1% increase in wetland development on flood
insurance claims, measured in log claims per hectare) in panel b. Grey areas are omitted from the analysis
because there are zero properties in these subwatersheds. MIDDLE ROW shows histograms of the CATEs in
panel c and projected impacts in panel d. BOTTOM ROW is a validation exercise that shows the group average
treatment effects (GATEs) for each quartile of the CATE distribution.

6



SI. Supplementary Information156

SI.1.1 Data157

Table SI.1 lists the observable factors at each site, along with their native spatial and temporal158

resolutions, which vary widely. We can observe our outcome variable, property damages from159

flooding (Y ), at the daily level. The NFIP is the dominant insurer for flooding in the US, with over160

4.7 million policies and $1.28 trillion in coverage. We use NFIP claims as our outcome variable161

because they provide a monetized measure of property damages from flooding that can be directly162

employed in a cost-benefit analysis. Additionally, the richness of the data in terms of temporal span,163

spatial extent and granularity, and consistency in the measurement makes our analysis empirically164

tractable. NFIP participation is greater than 50% among homes located in floodplains because the165

program subsidized and coverage is required for all homeowners with federally-backed mortgage.166

However, one limitation of using these data to measure flood damages is that they do not capture167

damages that occur outside the NFIP and will therefore likely underestimates of the flood protection168

services of wetlands. We can also observe exposure to extreme weather—a necessary condition for169

experiencing flood damages— at the daily level. We can only observe wetland area changes every170

five years, and data on physical features (e.g., vector data on the surface water network) tend to only171

be available for a single snapshot in time. Human features (e.g., the location and value of homes) are172

often available annually. Spatial resolutions range from individual points to coarse administrative173

regions. In specifying our model, we will experiment with different spatial units of analysis while174

allowing for interdependencies between locations that are hydrologically connected. Our study period175

spans the years 1990 to 2023, and all variables are available for the entire contiguous United States.176

SI.1.2 Double Machine Learning Details177

Robinson (1988) notes that estimating the relationship between Yi and Di conditional on Zi is178

equivalent to a three-step process.179

First, we model treatment, Di, as a function of pre-treatment observables, Zi:180

Di = g(Zi) + ηi (2)

Second, we model the outcome, Yi, also as a function of Zi:181

Yi = h(Zi) + νi (3)

Finally, we regress the residuals of Equation 3 on the residuals of Equation 2. That is, we can estimate182

the Average Treatment Effect (ATE), β, using the equation,183

{Yi − h(Zi)} = α+ β{Di − g(Zi)}+ µi (4)

In the Double Machine Learning (DML) approach, the functions g(·) and h(·) can be parameterized184

using any machine learning model. A primary advantage of DML is its systematic approach to185

controlling for confounding variables, even when these confounders are high-dimensional and186

complex.187

To estimate the potential heterogeneity in treatment effect, we propose using the R-Learner [NW21],188

which is a special case of the more general DML framework. In this estimator, the CATE is estimated189

by using the following estimating equation:190

β̂ = argmin
β

En

[(
Ỹi − β(Zi) · D̃i

)2
]

(5)
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Data source Variables Spatial
resolution

Temporal
resolution

(1) (2) (3) (4)

Outcome

Flood damages National Flood Insur-
ance Program (NFIP)

Flood insurance claims paid Census
block

Daily

Treatment

Wetland development USGS Coastal Change
Analysis Program (C-
CAP)

Land converted from wet-
land to developed area

30 meter 5-year

Covariates

Residential properties CoreLogic Property coordinates, as-
sessed values, and character-
istics (e.g. stories)

Points Annual

FEMA flood zones National Flood Hazard
Layer (NFHL)

12 different risk classes Polygons Static

Sociodemographics American Community
Survey

Population density, median
income, race/ethnicity, etc.

Census
tract

Annual

Adoption of flood mitiga-
tion measures

National Flood Insur-
ance Program (NFIP)

Community Rating System
(CRS) score

Census
block

Annual

Land cover USGS Coastal Change
Analysis Program (C-
CAP)

24 land cover classes, in-
cluding 6 different wetland
types

30 meter 5-year

Surface water network National Hydrography
Dataset

Flowlines, water resource
type, flow rates, etc.

Vector Static

Soil characteristics Gridded National Soil
Survey Geographic
Database (gNATSGO)

Depth to water table, soil
taxonomy, hydric rating,
flooding frequency, ponding
frequency

30 meter Static

Ecoregion Environmental Protec-
tion Agency

Level IV classification Polygons Static

Climate PRISM Climate Group Precipitation, temperature,
vapor pressure deficit, so-
lar radiation, cloud transmit-
tence

800 meter Static

Precipitation PRISM Climate Group 11 precipitation indicators
(e.g. Rx1day, Rx5day, SDII,
R10mm, R20mm)

800 meter Daily

Hurricane exposure NOAA HURDAT +
wind field model

Maximum wind speed,
Power Dissipation Index
(PDI)

800m Daily

Aerial imagery National Aerial Imagery
Program (NAIP)

RGB + Infrared Submeter Static

Table SI.1: Variables and data formats. We collect extensive high-resolution data on natural and human
systems at each location to inform our estimation of location-specific ecosystem values. Data come from a
variety of sources (column 2) and have different spatial and temporal resolutions (columns 4 and 5). Our study
period spans the years 1990 to 2023.

where Ỹi = Yi − E[Yi | Zi] and D̃i = Ti − E[Di | Zi] denotes the residual outcome and residual191

treatment in Equations 2 and 3, respectively. What distinguishes the R-Learner in the realm of causal192

inference is its non-parametric nature at the last stage (Equation 4). Unlike traditional regression193

approaches that might assume a specific functional form for β(Zi), the R-Learner allows for a more194

8



flexible estimation. This flexibility is crucial when the true relationship between the treatment and the195

outcome is complex and not well-modeled by parametric forms. By not imposing a predefined shape196

or relationship, the R-Learner can adapt to the underlying patterns in the data, potentially leading197

to more accurate and insightful estimates of the treatment effects across different subpopulations.198

The non-parametric functions in this method are modeled using techniques from computer vision,199

discussed in §2.200

SI.1.3 Optimization & training recipes for causal model learning201

To model and train the function β(·), we must solve a structured prediction problem. Unlike h(·)202

and g(·), where we know the true outputs in the training set, we lack a direct signal to supervise the203

output of β(·). Instead, we aim for β(·) to optimize the objective in Equation 6, making the task of204

learning a generalizable β(·) non-trivial:205

L(β(Zi)) =
1

N

N∑
i=1

(
Ỹi − β(Zi)D̃i

)2
(6)

We explore structured prediction techniques that leverage unsupervised and self-supervised learning.206

Contrastive learning and feature regression models have been shown to produce generalizable feature207

representations in vision tasks.208

Additionally, we will need to explore the best way to parameterize the impact of wetland loss on209

property damages from flooding. Equation 6 models the effect of wetland loss on flood damages210

linearly. This specification is appealing due to its simplicity, but the true relationship may take another211

form. We will explore other parametric (e.g., quadratic) and non-parametric (e.g., binned) models.212

We will also experiment with how to specify interdependencies between hydrologically connected213

areas.214
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