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We developed a multimodal causal framework by integrating Vi-
sion Transformers with the R-Learner framework to more accu-
rately capture heterogeneity in estimating wetland benefits for flood
protection. Using detailed, multi-scale, and multi-spatiotemporal-
resolution data, we applied this framework to wetlands across
Florida between 1996 to 2016. We find that each hectare of wetland
loss increases flood damages by $195.29 on average, with maximum
benefits reaching $512.29 in high-benefit areas. This framework
demonstrates significant improvements in capturing heterogeneity
compared to linear models or more advanced techniques relying
solely on tabular data, increasing the Ranked Average Treatment
Effect (RATE) ratio from 0.09 (sd = 0.09) in the tabular-only
model to 0.23 (sd = 0.09) in the multimodal model. Key drivers of
heterogeneity include land cover, exposed property values, and ge-
ography, highlighting the importance of location-specific factors in
determining wetland benefits. Our results demonstrate the critical
role of wetlands in flood mitigation and provide policymakers with
a robust tool for prioritizing conservation efforts.
Keywords: R-Learner, Heterogeneous Treatment Effect, Vision
Transformer, Wetland, Non-market valuation, Multimodal Causal
Framework

Humanity depends critically on Earth’s ecosystems and the services they pro-
vide, such as food, fuel, clean air, and natural hazard protection. Over the past
century, these ecosystems have undergone rapid and extensive transformations,
fueled by economic growth and the demands of an expanding global population.
While these changes have supported human development, they have also imposed
significant ecological costs. Quantifying these costs has been challenging since na-
ture’s goods and services often lack prices or markets (Assessment, 2005). Where
should ecosystems be converted to other land uses, and where should they be
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preserved to maximize societal benefits? Addressing this question requires accu-
rate geographic estimates of the benefits provided by nature. In this study, we
develop a scalable, quantitative, and rigorous method for modeling nature’s ben-
efits as a function of local human and physical features. Our approach provides
insights into key questions of geographic science: How do ecosystem services vary
across space, particularly along the rural-urban gradient or across diverse land-
scape structures? What local factors drive differences in the benefits ecosystems
provide? And how do natural versus human land uses deliver the greatest societal
benefits?

We focus on the concept of ecosystem services, which captures the goods and
services that nature provides to society. This framework allows policymakers to
evaluate the benefits of nature alongside the economic costs of conservation. De-
spite the growing policy relevance of ecosystem services, real-world applications
remain scarce due to challenges in generating accurate, scalable estimates (Ev-
erard, 2014; Mendelsohn and Olmstead, 2009). Traditional “benefits transfer”
methods, which extrapolate ecosystem service estimates from one context to an-
other, often fail to capture local heterogeneity in natural, social, and built systems
(Everard, 2021).

Our work is most closely related to the literature that empirically quantifies
damages resulting from environmental changes, such as studies quantifying the
impact of temperature on economic productivity (Burke et al., 2015), pollution
on health (Schlenker and Roberts, 2009), and climate on crop yields (Deryugina
et al., 2019). Flooding is among the most frequent and costly natural disasters in
the United States and worldwide (Wing et al., 2020). Wetlands serve as a nature-
based solution to mitigate flood risk by acting as natural sponges that absorb and
slow floodwaters. Previous studies have established a link between wetland loss
and increased property damages from flooding (Costanza et al., 2021; Sun and
Carson, 2020; Taylor and Druckenmiller, 2022; Aronoff and Rafey, 2023). These
studies highlight that the flood protection services provided by wetlands are spa-
tially heterogeneous; however, the methods used to model this heterogeneity are
often simplistic. For instance, Taylor and Druckenmiller (2022) estimate hetero-
geneous effects by interacting wetland loss at specific locations with a limited set
of local factors, such as population density, one at a time. In reality, the effec-
tiveness of wetland flood protection services depends on various characteristics,
including wetland type (e.g., estuarine emergent, freshwater forested), natural
features (e.g., vegetation, soil, depth), spatial positioning relative to water net-
works (e.g., coastal, adjacent to rivers, isolated), proximity to human systems
(e.g., nearby properties), and the interactions among these factors.

To address these limitations in capturing heterogeneity when estimating wet-
land benefits, we leverage recent advances in causal deep learning to develop a
novel multimodal causal framework for estimating heterogeneous ecosystem ser-
vices. Specifically, we integrate Vision Transformers with the R-Learner frame-
work, a flexible approach in causal inference that separates the modeling of treat-
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ment effects from outcome prediction to estimate heterogeneous treatment effects.
This enables us to determine how the benefits of wetlands vary as a function of
detailed local features, effectively incorporating both structured and unstructured
data for more nuanced and accurate analysis.

Our analysis uses detailed, multi-scale, and multi-spatiotemporal-resolution
data to estimate the location-specific flood mitigation benefits of wetlands across
Florida. We employ flood claims data spanning decades, along with a rich set of
covariates including elevation, land cover, proximity to shorelines, and sociode-
mographic information. These data allow us to estimate the conditional average
treatment effect (CATE) of wetland development on flood damages, offering the
first scalable framework for estimating ecosystem services at this level of granu-
larity.

This study makes several key contributions by advancing the understanding
of wetland benefits and providing actionable insights for environmental decision-
making. First, we conduct a detailed analysis of location-specific wetland benefits,
estimating the causal effects of wetland development on flood damages at a highly
granular level to uncover localized variations in their protective value. To achieve
this, we integrate Vision Transformer architecture with the R-Learner framework,
a novel approach that combines advanced computer vision techniques with causal
inference to estimate heterogeneous treatment effects. This integration allows
us to capture spatial heterogeneity in wetland benefits and demonstrates the
importance of multimodal data in identifying key drivers such as exposed property
value, elevation, land cover, and proximity to shorelines.

Our findings provide spatially explicit estimates that can guide policymakers in
prioritizing conservation efforts, such as targeting wetlands near high-risk flood
zones or urban areas with significant flood mitigation needs. Additionally, the
scalability of our framework makes it applicable beyond Florida to other regions
with rich multimodal datasets and adaptable to broader ecosystem valuation chal-
lenges, such as assessing the role of forests in agricultural productivity or urban
greening projects in regulating extreme heat.

We find that each hectare of wetland loss increases flood damages by $195.29 on
average, with maximum benefits reaching $512.29 in areas with high exposure to
flood risks. Our analysis highlights the limitations of linear models in capturing
the complex heterogeneity of wetland benefits. Even advanced techniques like
the R-Learner framework, when applied without multimodal data, fail to fully
capture this richness. By integrating multimodal data into the framework, we
significantly enhance the ability to model heterogeneity, increasing the Ranked
Average Treatment Effect (RATE) ratio from 0.09 (SD = 0.02) in the tabular-
only model to 0.23 (SD = 0.04) in the multimodal framework. This improvement
not only provides more accurate estimates but also equips policymakers with a
powerful tool for informed decision-making. By quantifying heterogeneity more
effectively, our approach underscores the critical role of wetlands in mitigating
climate change impacts and supports sustainable management practices.



4 MALAEKEH: WRITING SAMPLE DECEMBER 2024

The paper is structured as follows: Section I outlines our data, Section II
introduces the causal identification strategy, validation procedures, and our mul-
timodal causal framework. SectionIII presents the results, SectionIV concludes
the paper with a short discussion and policy implications.

I. Data

We measure property damages from flooding using flood insurance claims from
the National Flood Insurance Program (NFIP). The NFIP is the dominant in-
surer for flooding in the United States, with over 1.8 million policies and $466
million in coverage in Florida. We use NFIP claims because they provide a mon-
etary measure of property damages from flooding that can be directly applied in
cost-benefit analyses. Furthermore, the richness of the data—spanning temporal,
spatial, and granular dimensions, along with its consistency—makes our analysis
empirically tractable. NFIP participation exceeds 50% among homes located in
floodplains, driven by the program’s subsidies and the requirement for coverage
on federally-backed mortgages. However, a limitation of using these data is that
they do not account for damages outside the NFIP, potentially underestimating
the flood protection services provided by wetlands.

The conversion of wetlands to developed areas is measured in log hectares and
referred to as ”wetland development” hereafter. We quantify wetland develop-
ment using data from the Coastal Change Analysis Program (C-CAP) land cover
product. We used the difference in wetland area between 1996 and 2016 as our
treatment variable. Additionally, we computed five-year averages of flood dam-
ages because flood insurance loss payments in the NFIP dataset are highly vari-
able across individual years due to the infrequent nature of flood events. Figure 1
illustrates the differences in wetland development and flood claims (both in loga-
rithmic scale) from 1996 to 2016 in Panels (a) and (b). Panel (c) shows a scatter
plot illustrating the positive relationship between wetland development and flood
claims differences. However, this relationship is influenced by factors such as
wetter climates and rapid population growth, which often lead to more wetlands,
urban expansion, and higher flood claims, complicating the causal interpretation.

For control variables, we collected extensive multimodal data for each site, en-
compassing aerial imagery, natural system features (e.g., land cover, flood zones,
elevation, surface water networks, and soil classifications), human system at-
tributes (e.g., property locations, values, and flood mitigation measures), as well
as weather and climate metrics (e.g., precipitation patterns and hurricane expo-
sure).

Table 1 summarizes the data variables used in the analysis, highlighting their
sources, spatial resolutions, and temporal resolutions. The outcome variable,
flood damages, is observed daily at the census block level, while wetland develop-
ment—the primary treatment variable—is available every five years at a 30-meter
resolution. Data on extreme weather events, like precipitation and hurricane ex-
posure, are recorded daily. Human systems data, such as property locations,
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Figure 1. : Increased wetland development corresponds to higher flood claim
values. Note: a) the spatial distribution of wetland development from 1996 to 2016, b) the spatial
distribution of flood claim differences from the 5-year window centered around 1996 and 2016, and c)
the association between wetland development and flood claim changes. Wetland development represents
the conversion or loss of wetland areas using data from the the Coastal Change Analysis Program (C-
CAP). Flood claim differences are derived from the National Flood Insurance Program (NFIP) data.
Both variables are aggregated to the grid cells across Florida

values, and flood mitigation measures, are updated annually. Physical attributes,
including the surface water network and soil characteristics, are typically static
snapshots. Spatial resolutions vary from precise point data to broader admin-
istrative or hydrological regions, allowing flexibility in model specification and
the incorporation of interdependencies across hydrologically connected locations.
This detailed data framework supports robust modeling of ecosystem and human
system interactions.

Figure 2 demonstrates the multimodality of data sources used in our analysis,
using two wetland sites in Florida as examples. Site 1, shown at the top, rep-
resents a coastal residential area, while Site 2, at the bottom, depicts an inland
agricultural region. Each column showcases a different data layer, including aerial
imagery, wetland polygons and types, property locations and values, FEMA flood
zones, land cover classifications, and elevation measurements. The integration of
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Table 1—: Variables and data formats.

Data source Variables Spatial
resolution

Temporal
resolution

(1) (2) (3) (4)
Outcome
Flood damages National Flood Insur-

ance Program (NFIP)
Flood insurance claims
paid

Census
block

Daily

Treatment
Wetland develop-
ment

USGS Coastal Change
Analysis Program (C-
CAP)

Land converted from wet-
land to developed area

30 meter 5-year

Covariates
Residential proper-
ties

CoreLogic Property coordinates, as-
sessed values, and charac-
teristics (e.g. stories)

Points Annual

FEMA flood zones National Flood Hazard
Layer (NFHL)

12 different risk classes Polygons Static

Sociodemographics American Community
Survey

Population den-
sity, median income,
race/ethnicity, etc.

Census
tract

Annual

Adoption of flood
mitigation measures

National Flood Insur-
ance Program (NFIP)

Community Rating Sys-
tem (CRS) score

Census
block

Annual

Land cover USGS Coastal Change
Analysis Program (C-
CAP)

24 land cover classes, in-
cluding 6 different wet-
land types

30 meter 5-year

Surface water net-
work

National Hydrography
Dataset

Flowlines, water resource
type, flow rates, etc.

Vector Static

Soil characteristics Gridded National Soil
Survey Geographic
Database (gNATSGO)

Depth to water table, soil
taxonomy, hydric rating,
flooding frequency, pond-
ing frequency

30 meter Static

Ecoregion Environmental Protec-
tion Agency

Level IV classification Polygons Static

Climate PRISM Climate Group Precipitation, temper-
ature, vapor pressure
deficit, solar radiation,
cloud transmittence

800 meter Static

Precipitation PRISM Climate Group 11 precipitation indicators
(e.g. Rx1day, Rx5day,
SDII, R10mm, R20mm)

800 meter Daily

Hurricane exposure NOAA HURDAT +
wind field model

Maximum wind speed,
Power Dissipation Index
(PDI)

800m Daily

Aerial imagery National Aerial Im-
agery Program (NAIP)

RGB + Infrared Submeter Static

Note: We collect extensive high-resolution data on natural and human systems at each location to inform
our estimation of location-specific ecosystem values. Data come from a variety of sources (column 2)
and have different spatial and temporal resolutions (columns 4 and 5). Our study period spans the years
1996 to 2026
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these diverse data modalities is a key contribution of this study, allowing for the
precise estimation of the heterogeneous causal effects of wetland development on
flood damages.

All data are aggregated at the scene level, with each scene covering approxi-
mately 58.98 km2. This resolution results in a total of 3,566 scenes, ensuring com-
plete coverage of the state of Florida (Figure 3). Aggregating data at this scale
preserves spatial patterns and variability while maintaining a manageable granu-
larity for tabular analysis. This represents the finest resolution possible without
significant loss of information from the spatial resolutions of the variables. The
integration of images with differing spatial resolutions will be discussed further
in the Empirical framework section.

Figure 2. : Example of two wetland sites in Maimi Dade, FL. Note: Site 1 (TOP) is a
residential area along the coast. Site 2 (BOTTOM) is an inland agricultural area. Each column shows
a different data layer (LEFT to RIGHT): aerial imagery, wetland polygons and types, the location and
value of properties, flood zones, land cover, and elevation.

II. Empirical Framework

Our empirical approach has two primary objectives: (i) to estimate the causal
effect of ecosystem changes on indicators of human well-being and (ii) to estimate
heterogeneous effects that allow for rich variation in ecosystem services across
space. A key challenge is that wetland extent is correlated with other factors
influencing flood damages. For instance, regions with higher economic develop-
ment often have better flood protection infrastructure but may also experience
greater economic losses during extreme events due to higher property values. As
a result, we observe a positive correlation between flood protection infrastructure
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Figure 3. : Overlay of scenes and county bounderies in Florida. Note: The grid overlay
represents the spatial unit of analysis, where each scene corresponds to a cell with an approximate area
of 58 kmš, and the red lines depict county boundaries. These spatial units form the foundation for
integrating wetland development, flood damage data, and covariates, enabling a consistent analysis of
heterogeneity across geographic scales in tabular format. The uniform grid design supports the aggrega-
tion of multi-resolution data, ensuring comparability while maintaining spatial granularity.

and economic losses. However, this relationship should not be interpreted as flood
protection causing greater losses, as confounding factors, such as regional wealth,
likely drive the correlation. Similarly, the positive correlation between economic
development and flood damage raises concerns about omitted variable bias.

Our primary identification strategy leverages the R-Learner framework (Nie
and Wager, 2021) with long-differenced treatment and outcome variables to esti-
mate the long-term effects of wetland development on flood damage, taking into
account potential adaptation. This approach addresses time-invariant unobserved
confounders but may still be sensitive to time-varying unobservables that affect
both the treatment and outcome. Despite relying on relatively strong assumptions
of unconfoundedness compared to quasi-experimental methods, this strategy of-
fers greater generalizability. It allows for flexible modeling of heterogeneity using
advanced methods and scalability, including the integration of computer vision
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techniques to fully utilize multimodal data. To further validate our causal esti-
mates, we employ a natural experimental approach with difference-in-differences,
which is discussed in detail in Section III.C.

We want to examine the impact of wetland development ∆Ti at the site i on
flood damage ∆Yi, taking into account all the observable characteristics of the site
Xi. Xi itself is set of variables Xi = {Ii,Ni,Hi,Wi} in which Ii is aerial imagery,
Ni is natural systems, Hi is human systems, and Wi is weather and climate data.
The general model is

(1) ∆Yi = g(Xi,∆Ti)+f(Xi)+ ϵi

where g(Xi,∆Ti) captures the complex relationship between wetland development
and flood damage, including interactions with site characteristics that cannot be
identified using conventional causal techniques. Taylor and Druckenmiller (2022)
assumed a linear causal relationship between T and Y , which provides valuable
insights but may oversimplify the complexity of this setting.

We are particularly interested in the average treatment effect (ATE), defined
as the expectation over the joint distribution of Xi and ∆Ti:

ATE = E
[

∂g(Xi,∆Ti)
∂∆Ti

]
.

Similarly, the conditional average treatment effect (CATE) can be estimated by
conditioning on specific site characteristics:

τ(x) = CATE(x) = E
[

∂g(Xi,∆Ti)
∂∆Ti

∣∣∣∣ Xi = x

]
.

Specifically, we propose using the R-Learner framework developed by Nie and
Wager (2021) to estimate heterogeneous treatment effects by reformulating the
estimation procedure into three prediction tasks built on machine learning and
deep learning approaches.

The next sections proceed as follows: In Section II.A, we briefly describe how
causal identification and the estimation of heterogeneous treatment effects us-
ing the R-Learner framework are reformulated as prediction tasks. Section II.B
introduces our multimodal causal framework, highlighting the methodological in-
novations achieved by combining computer vision with the R-Learner framework.
Section II.C sheds light on the heterogeneity analysis, and Section II.D explains
the validation of our results and framework using a natural experimental approach
with difference-in-differences.

A. R-Learner and Heterogenous Treatment Effect Estimation

We formulate the problem using the potential outcomes framework (Neyman,
1923; Rubin, 1974), where for each site i, we observe features Xi, a long-differenced
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outcome ∆Yi, and a long-differenced treatment ∆Ti. We assume the existence of
potential outcomes ∆Yi(∆T ) for each treatment level ∆T . The goal is to estimate
the conditional average treatment effect (CATE):

(2) τ∗(Xi) = E
[

∂∆Yi(∆T )
∂∆T

∣∣∣∣ Xi

]
.

Under the assumption of unconfoundedness, {∆Yi(∆T )} ⊥ ∆Ti | Xi, the condi-
tional mean outcome and treatment propensity are defined as:

(3) m∗(Xi) = E[∆Yi | Xi], e∗(Xi) = E[∆Ti | Xi].

The Robinson decomposition (Robinson, 1988) rewrites the estimation problem
as:

(4) ∆Yi −m∗(Xi) = (∆Ti −e∗(Xi))τ∗(Xi)+ ϵi.

If the conditional average treatment effect (CATE) is constant, i.e., τ(X) = τ for
all X, the following estimator is semiparametrically efficient for τ under uncon-
foundedness (Chernozhukov et al., 2018, 2024; Robinson, 1988):

(5) τ̂ =
1
n

∑n
i=1 (∆Yi −m∗(Xi))(∆Ti −e∗(Xi))

1
n

∑n
i=1 (∆Ti −e∗(Xi))2 .

Although this estimator assumes a constant treatment effect, the formulation can
be extended to estimate τ∗(Xi) by minimizing the empirical loss, motivated by
the R-Learner framework (Nie and Wager, 2021):

(6) τ̂ = argmin
τ

1
n

n∑
i=1

[(∆Yi −m∗(Xi))− (∆Ti −e∗(Xi))τ(Xi)]2 +Λn(τ),

where Λn(τ) is a regularization term. This framework supports flexible machine
learning and deep learning techniques for calculating the mean treatment and
outcome propensity scores, as well as for optimizing the minimization objective
function to capture the complex relationship between wetland development (∆T )
and flood damages (∆Y ). CATE estimates are obtained using 5-fold estimation
to ensure robust and unbiased evaluation. In each fold, the model is trained on
80% of the data, while CATEs are predicted on the held-out 20%, preventing data
leakage and overfitting. We utilize a variety of models, including linear models
with regularization, forest-based methods, gradient boosting models, and neural
networks. Among these, we find that using random forests for the first two stages
and causal forests (Wager and Athey, 2018) to solve the local moment equation
provides the most robust results. A detailed comparison of these approaches is
included in Appendix A1.
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B. Multimodal Causal Framwework

Current approaches to modeling heterogeneous effects predominantly rely on
algorithms that process tabular data, such as causal forests or gradient boost-
ing methods. However, these methods often fail to capture the rich, complex
interactions present in multimodal datasets (Jerzak and Daoud, 2023; Jerzak
et al., 2023). Such datasets may include satellite imagery, weather observations,
surface water network vector data, residential property values, raster data on el-
evation and soil characteristics, and administrative data on sociodemographics.
Aggregating this information into tabular formats can obscure critical local-level
interactions. For instance, the relative location of a wetland to surface water net-
works and residential properties may significantly influence its flood protection
value. A wetland situated between floodwater sources and residential properties
is more likely to mitigate flood damages effectively than one located behind the
properties.

In this work, we focus on developing a multimodal causal framework to im-
prove causal effect estimation by harnessing the strengths of diverse data sources
and representations. By integrating multimodal data, the framework can better
capture the interactions between human and natural systems, providing more
nuanced and accurate insights into causal relationships.

As argued by Belloni et al. (2014), orthogonalization is crucial in causal in-
ference with high-dimensional data, particularly when certain features strongly
predict treatment propensities but are weakly predictive of outcomes. A mul-
timodal framework addresses this limitation by inherently supporting orthogo-
nalization, effectively capturing global spillovers that are especially significant
in image-based settings. These spillovers enhance the prediction of both treat-
ment and outcomes given a set of covariates. By integrating rich representations
from multimodal data, this framework enables robust causal effect estimation,
effectively accounting for confounding factors and complex interactions that tra-
ditional tabular-based methods often fail to capture.

The proposed multimodal causal framework integrates representations from im-
agery and tabular data to estimate causal effects as shown in Figure 4. To handle
the high dimensionality of pre-treatment image array Mi, we employ a represen-
tation extraction function ϕ : M →Rd that maps images to lower-dimensional fea-
ture vectors. We use transformer architectures for image embeddings due to their
ability to capture both local and global dependencies, unlike convolutional neural
networks (CNN), which rely on locality and translation invariance (Dosovitskiy
et al., 2021). Transformers’ attention mechanisms allow reasoning across spatially
and temporally dispersed observations, making them ideal for our project. For
example, they can model how rainfall in one location impacts flood damages in
hydrologically connected distant areas, enabling more accurate causal effect esti-
mation. First, images are processed using a pre-trained Vision Transformer (ViT)
architecture (Dosovitskiy et al. 2021), specifically the ViT-B/16 model. The in-
put covariates as images are divided into fixed-size patches (e.g., 16×16 pixels),
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and each patch is flattened into a lower-dimensional vector through a linear trans-
formation. Positional embeddings are added to retain spatial context, and the
sequence of patches is fed into a transformer encoder consisting of 12 transformer
blocks with multi-head self-attention layers and feed-forward networks. This re-
sults in high-dimensional embeddings (768-D) that effectively capture spatial and
structural features from the images. To reduce dimensionality while retaining key
information, Principal Component Analysis (PCA) is applied to the embeddings,
selecting components that explain a specified variance (e.g., 80%). The resulting
processed representations serve as compact, variance-preserving summaries of the
visual data. The processed embeddings (Vi) from the ViT are concatenated with

Vision
Transformer

Tabular Data

Image
Embeddings

Principal
Component

Analysis

Processed
Representations

Concatenation

Data

Multimodal

R-Learner
Framework

Evaluation

Figure 4. : The schematic of multimodal causal framework developed in this study.
Note: It integrates Vision Transformer (ViT) embeddings and tabular data for causal estimation. Image
embeddings are extracted using ViT-B/16, reduced via PCA, and combined with tabular covariates to
create a multimodal dataset. The model passes this dataset to the R-Learner framework, which provides
evaluation metrics. An iterative process explores all combinations of representations and PCA values
to identify the optimal configuration, ensuring effective capture of treatment heterogeneity.

tabular covariates (Xi) to form a multimodal dataset, which is then input into
the R-Learner framework (Nie and Wager, 2021). The R-Learner reformulates the
causal estimation problem into a loss minimization task. This process iteratively
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searches over combinations of PCA-reduced representations and evaluates their
ability to explain treatment selection and outcomes and heterogeneity measures
from CATEs, ensuring optimal representations are used for causal estimation.

To fix ideas, the optimization proceeds by comparing the heterogeneity signal
of the representations extracted from ϕ(Mi,k) against the baseline heterogeneity
signal from the tabular model Di. The goal is to identify the combination of
representation ϕ ∈ Φ and PCA level k ∈ K that maximizes the improvement in
heterogeneity µ over the baseline.

(7) max
ϕ∈Φ,k∈K

{E [µ(hθ (ϕ(Mi,k)))]−E [µ(hθ (Di))]} ,

where Φ is the set of candidate representation extraction functions. Mi represents
the spatial imagery for unit i. k ∈ K specifies the level of PCA retained (e.g.,
the number of components). hθ maps the extracted representations to treatment
and outcome spaces. µ measures the heterogeneity of causal effects given the
representations. Di represents the baseline tabular model for comparison.

Using the multimodal causal framework, we aim to understand and compare
the dynamics of the following quantities, both separately and jointly:

Tabular CATE:

(8) τ(x) = E
[

∂∆Yi(∆T )
∂∆T

∣∣∣∣ Xi = x

]
,

where Xi represents tabular covariates.
Image CATE:

(9) τ(m) = E
[

∂∆Yi(∆T )
∂∆T

∣∣∣∣ Vi = v

]
,

where Vi is the image representation extracted from the ViT model.
Multimodal CATE (Image + Tabular):

(10) τ(v,x) = E
[

∂∆Yi(∆T )
∂∆T

∣∣∣∣ Vi = v,Xi = x

]
,

where Vi represents the image embeddings concatenated with tabular features Xi.
Additionally, we seek to quantify how much the optimal image representations

enhance our ability to capture the presence of heterogeneity which is discussed in
Section II.C.

C. Assessing Heterogeneity

At first, we evaluate how each of our models performs in practice, focusing
on their ability to capture effect heterogeneity across different settings (tabular,
image, and multimodal). Since true CATE estimates are unobserved, directly
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assessing model performance is challenging. However, we can address this issue
by leveraging the Rank-Weighted Average Treatment Effect (RATE) (Yadlowsky
et al., 2024). This measure provides a way to quantify and compare the per-
formance of different CATE estimation methods in the absence of ground truth
individual treatment effects. Furthermore, we generalize the RATE metric to
accommodate continuous treatment settings.

The RATE ratio quantifies how effectively each model prioritizes units with high
treatment effect heterogeneity. By integrating over the TOC curve, we measure
the gain in treatment effect lift under different prioritization rules, allowing us
to determine which representation type performs best in capturing heterogeneity.
The RATE ratio is:

(11) RATE =
∫ 1

0
a(q)

[
E

(
∂∆Yi

∂∆Ti

∣∣∣∣ S(Zi) ≥ 1− q

)
−E

(
∂∆Yi

∂∆T

)]
dq,

where S(Zi) is the scoring function applied to the representation Zi (tabular,
image-only, or multimodal) to prioritize units. The scoring function S(·) is derived
from a data sample independent of the one used for calculating the treatment
effect estimates. a(q) = 1 is the weighting function using the Area Under the
Treatment Effect Curve (AUTOC).

Secondly, we estimate the best linear fit using forest predictions (on held-out
data) as well as the mean forest prediction as regressors using the following equa-
tion:

(12) ∆Yi −m∗(Xi) = α(∆Ti −e∗(Xi))+β (τ̂(Xi)− τ̄)(∆Ti −e∗(Xi))+ ϵi,

in which the coefficients α and β evaluate CATE prediction performance. α = 1
indicates correct average predictions, while β = 1 reflects accurate heterogene-
ity capture. The slope β measures the covariance between predicted and true
CATE. A significant β > 0 confirms heterogeneity, while values below 0 are not
meaningful.

D. Quasi-experimental approach for validation

We will validate the R-Learner causal estimates by comparing the parameter
estimates from R-Learner with those from a quasi-experiment that uses down-
stream wetlands as a natural counterfactual for upstream wetlands. The primary
challenge for inference in our setting is that wetland extent is correlated with
other factors that drive flood damages. For example, communities with wetter
climates and more frequent flooding tend to have more wetlands. Indeed, there
is a positive correlation between wetland extent and flood damage, but this rela-
tionship should not be interpreted as wetlands causing flooding since confounding
factors (including precipitation) could be driving the correlation. Similarly, flood
damages and real estate development are positively correlated, further raising
concerns about omitted variables.
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The intuition behind the quasi-experimental setup is that, for non-coastal ar-
eas, flood risk should be affected by changes in upstream wetland area but not
changes in downstream wetland areas. We can therefore use changes in down-
stream wetland areas as a natural counterfactual for changes in upstream wetland
areas. Following Taylor and Druckenmiller (2022), we will estimate the impact
of wetland loss on flood damages using an upstream-downstream difference-in-
differences model:

(13) ∆Yi = α +θ∆T Up
i +λ∆T All

i +∆XiΩ+ ζi

where ∆T Up
i denotes changes in wetland area upstream of location i and ∆T All

i

denotes changes in wetland area both upstream and downstream of location i.
All other variables are defined as in Equation 1. The spatial extent of upstream
versus downstream wetland area will be computed using the National Hydrog-
raphy Dataset flow direction over the geographic extent of the watershed. The
coefficient of interest, θ, represents the differential effect of upstream wetlands
on flood damages. This upstream-downstream framework effectively uses down-
stream changes in wetland area to control for time-varying factors unrelated to
flooding that drive both changes in overall wetland extent and changes in flood
damages. Consider real estate development as an example. Wetlands are lost to
urban expansion in places with high population growth, which in turn experience
greater flood damages due to the larger housing stock. As a result, wetland loss
could be misidentified as causing flood damages, when in reality the growth in
housing stock is the driving cause of the increased flood damages. The upstream-
downstream natural experiment addresses this concern under the assumption that
real estate development is not systematically biased toward either upstream or
downstream areas relative to a given location.1 We will compare our estimates
of ATE from the R-Learner approach and θ from the upstream-downstream ap-
proach. If the two values are similar, this will increase our confidence in the
causal interpretation of the R-Learner estimates since the upstream-downstream
approach does not rely on the same conditional independence assumption.

III. Results

A. Main Results

We evaluate a range of models to determine the best approach for estimating
treatment effects, including linear models with regularization, forest-based meth-
ods, gradient boosting models, and neural networks, all optimized with parameter
tuning. From this point onward, all results are derived using random forests in
the first two stages and causal forests (Wager and Athey, 2018) to address the

1This assumption is essential for valid inference in the upstream-downstream framework. Taylor
and Druckenmiller (2022) tested this and other endogeneity concerns and find no evidence of systematic
differences in upstream versus downstream areas.
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local moment equation as it performed better than other combination of machine
learning prediction algorithms. A comprehensive comparison of these methods
and their performances are presented in Appendix A1.

Table 2 presents the Average Treatment Effect (ATE) estimates from three
models: the tabular model, the image-only model, and the multimodal model.
These models estimate the causal impact of wetland development on flood dam-
ages from 1996 to 2016.

As shown in the first row, wetland development significantly increases flood
damages across all three models. A 1% increase in wetland development is as-
sociated with a 0.2317% to 0.4042% increase in flood damages. While the ATE
values for the tabular and multimodal models are similar (0.2317 and 0.2438,
respectively), the image-only model (0.4042) shows a substantially higher ATE.
This discrepancy might arise because image embeddings alone may not capture
the rich, contextual information (such as sociodemographic factors) provided by
the tabular data.

In the second row, the dollar impact per hectare of wetland development is re-
ported. Each hectare of wetland development is associated with a change in flood
damages of $185.73 (tabular), $324.03 (image-only), and $195.29 (multimodal) at
the scene level (∼58 km2). Again, the multimodal model’s estimates are slightly
higher than the tabular model, but the difference is modest. These numbers
are comparable to the findings of Taylor and Druckenmiller (2022), where their
long-differenced model reported an impact of $229.2 per hectare at the ZIP-code
level.

The results suggest that our R-Learner framework coupled with transformer
architecture provides estimates similar to traditional linear methods and quasi-
experimental approaches in ATE, but we argue that it allows for a more nuanced
exploration of heterogeneity which will be discussed in Section III.B. We demon-
strate how our multimodal causal framework captures heterogeneity in flood dam-
age impacts that tabular models alone fail to reveal.

B. Heterogeneity

Figure 5 illustrates the Conditional Average Treatment Effect (CATE) estimates
obtained from tabular, image-only, and multimodal models. All models exhibit
significant heterogeneity in CATE values, reflecting the ability of the R-Learner
framework to capture complex treatment effect variation. The multimodal and
tabular models demonstrate relatively high and similar correlations, suggesting
comparable patterns in the spatial distribution of treatment effects, despite dif-
ferences in the absolute CATE estimates between the two models. In contrast,
the image-only model displays substantially different CATE values and lower cor-
relation with the other two models, aligning with the differences observed in the
estimated Average Treatment Effects (ATE).

While the observed correlations provide a straightforward comparison of the
CATE estimates, it is important to note that correlation is a linear measure and
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Table 2—: The Effect of Wetland Development on Flood Damages

Dependent Variable: Changes in Flood Claims (%)
Tabular Image Multimodal

Wetland Development (%) 0.2317*** 0.4042*** 0.2438***
(0.0445) (0.0380) (0.0430)

Dependent Variable: Changes in Flood Claims (US$)
Wetland Development (hectare) 185.73*** 324.03*** 195.29***

(35.67) (30.45) (34.50)
Tabular Controls ✓ ✓
Image Embeddings ✓ ✓
N 3566 3566 3566

Note: In all three models, R-Learner framework with random forest in the first two stages and causal
forest in the last stage is used to estimate average treatment effects (ATE).Covariates include property
data (CoreLogic), FEMA flood zones, sociodemographics (ACS), flood mitigation measures (NFIP), land
cover (C-CAP), surface water and soil characteristics, climate and precipitation metrics (PRISM),
hurricane exposure (NOAA), and high-resolution aerial imagery (NAIP).Significance levels: *** p <
0.01, ** p < 0.05, * p < 0.1. Standard errors in parentheses.

may not fully capture non-linear relationships between the CATEs produced by
different models. Nonetheless, it serves as a useful starting point for assessing the
relative agreement between models in identifying treatment effect heterogeneity.

The analysis of the TOC curve (Figure 6) focuses on the estimated ATE for the
top q-percentile of units compared to the overall ATE of the sample. The results
demonstrate that the multimodal model consistently identifies higher ATE values
in the top percentiles than the image-only and tabular models. This indicates
that the multimodal model excels at capturing heterogeneity in treatment effects
across the sample, effectively leveraging the combined strengths of tabular and
image data. The image-only model, while performing better than the tabular
model, still falls short of the multimodal model. The tabular model, in contrast,
struggles to capture the complexity of treatment heterogeneity inherent in the
data.

Figure 7, which presents the RATE ratio estimates for the three models, re-
inforces these findings. The RATE estimate for the multimodal model (0.23) is
significantly different from zero, validating its ability to detect meaningful het-
erogeneity in treatment effects. The image-only model also shows some capacity
for capturing heterogeneity but is less effective than the multimodal approach. In
contrast, the tabular model’s RATE estimate is not significantly different from
zero (0.09), underscoring its limitations in accounting for nuanced relationships,
particularly those requiring spatial or visual contextualization.

To further assess the heterogeneity across the models in Table 3, we estimate
the best linear fit using forest predictions (on held-out data) as the mean forest
prediction as regressors, as described in Equation 12, to evaluate the heterogeneity
captured by the models. The coefficient α is significantly different from zero
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Figure 5. : Pairwise correlation of Conditional Average Treatment Effect (CATE)
estimates from the tabular, image only, and multimodal models. Note: The image-only
model uses embeddings extracted exclusively from Vision Transformer (ViT), capturing spatial features
from images. The multimodal model combines image embeddings with tabular data through an optimized
concatenation process, leveraging the strengths of both data modalities.

across all three models, indicating that each model accurately captures the average
treatment effect. However, only the multimodal model demonstrates the ability
to capture heterogeneity, as evidenced by beta being greater than zero, while beta
values in other models are not significantly meaningful.

These results are critical for accurately estimating the benefits of wetlands for
flood protection, as they highlight the necessity of multimodal causal framework
for capturing the spatial and economic heterogeneity of wetland benefits. This
capability is essential for guiding resource allocation, planning interventions, and
shaping policies to enhance resilience against flood damages in vulnerable regions.

Figure 8 illustrates the spatial heterogeneity in CATE estimates using the mul-
timodal causal framework, measuring the elasticity between wetland development
and per-hectare flood claims across Florida. The CATE values range from 0 to
0.64, translating to wetland benefits of up to $512.65 in flood claim reductions per
hectare. Higher CATE values are predominantly observed near coastal regions,
particularly along the Gulf Coast and the southeastern urbanized areas, as well
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Table 3—: Using best linear fit using forest predictions (on held-out data) as well
as the mean forest prediction as regressors to assess heterogeneity

Model α (Mean Forest Prediction) β (Differential Forest Prediction)

Tabular 1.14516***
(0.36228)

-0.22823
(0.53929)

Image 0.98250***
(0.12960)

0.57734
(0.71380)

Multimodal 0.98363***
(0.29947)

1.33410*
(0.64371)

Note: A significant α indicates that the the average prediction produced by the forest is correct, while
β assesses the model’s capacity to adequately capture underlying treatment effect heterogeneity. The
multimodal model shows strong performance and its superior ability to integrate information from tabular
data and image embeddings to capture both average effects and heterogeneity more effectively than the
tabular-only or image-only models. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1. One-sided
heteroskedasticity-robust (HC3) Standard errors in parentheses.

Table 4—: Comparison of Variables Between Lowest and Highest CATE Groups

Lowest CATE Highest CATE SMD
Exposed Capital
Property Value (Million USD) 22.96 (7.03) 35.28 (15.08) 0.96
Geography
Elevation (m) 31.92 (14.46) 10.36 (10.94) 1.68
Depth to water table (m) 107.27 (4.71) 65.56 (4.13) 8.65
Distance to shore (km) 43.35 (2.07) 8.52 (1.40) 13.75
Land Cover (share of land area)
Developed 0.02 (0.05) 0.03 (0.06) 0.11
Agriculture 0.07 (0.17) 0.20 (0.20) 0.68
Vegetation 0.11 (0.09) 0.06 (0.09) 0.69
Forest 0.25 (0.21) 0.13 (0.16) 0.66
Wetland 0.36 (0.30) 0.33 (0.19) 0.12
High-risk Flood Zones (share of land area)
A zones 0.12 (0.14) 0.22 (0.33) 0.41
V zones 0.00 (0.04) 0.08 (0.15) 0.62
Number of observations 421 421

Note: Columns (1) and (2) show the mean (SD) characteristics of scenes with low and high CATEs,
respectively. We define low CATE scenes as those with CATES in the first quartile and high CATE
areas as those with CATES in the fourth quartile. Column (3) shows the standardized mean difference
(SMD).Standard deviations in parentheses.

as riverine systems such as the St. Johns River. Conversely, lower CATE values
are found in the interior regions of Florida, particularly around the Lake Okee-
chobee watershed. These areas are characterized by fewer urban developments,
resulting in a weaker relationship between wetland development and flood claims.
This pattern suggests that wetland benefits are highly context-dependent, with
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Figure 6. : Targeting operator characteristic curves for the tabular, image only,
and multimodal models. Note: The multimodal model consistently demonstrates higher estimated
treatment effects compared to the tabular and image-only models across all treated fractions, highlighting
its superior ability to integrate information from both data modalities. 95% confidence interval in dash
lines.

their flood mitigation value varying based on geography, urbanization, and flood
exposure.

While the map provides valuable insights into spatial variability, it is challeng-
ing to fully understand the drivers of heterogeneity through visual inspection
alone. To gain deeper insights, we compare the characteristics of regions in the
top quartile (25th percentile) of CATE values with those in the lowest quar-
tile across multiple dimensions, such as property value, geography, and high-risk
flood zones. This comparison enables a more comprehensive understanding of the
factors contributing to the observed spatial differences in treatment effects.

Table 4 compares the mean values of the covariates in the scenes with low
CATEs (Column 1) and high CATEs (Column 2). The large standardized mean
differences (SMDs) reported in Column 3 indicate that these two groups are
systematically different along many dimensions. Locations with higher wetland
flood protection services tend to have greater exposed property values (35.28
million USD compared to 22.96 million USD), a higher proportion of land in
high-risk flood zones (A and V zones), lower elevation (10.36 m compared to
31.92 m), closer proximity to the shoreline (8.52 km compared to 43.35 km), and
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Figure 7. : Estimated Ranked Average Treatment Effect (RATE) ratio for the tab-
ular, image only, and multimodal models. Note: The multimodal model achieves the highest
RATE estimate, demonstrating its superior ability to rank and capture treatment effect heterogeneity
compared to the tabular and image-only models. The error bars represent 95% confidence intervals.

shallower water table depths (65.56 m compared to 107.27 m). Additionally, these
areas exhibit a higher share of developed and agricultural land, alongside lower
proportions of forest, vegetation, and wetland cover.

These patterns align with intuitive expectations. Wealthier areas with more
expensive properties and infrastructure face higher economic risks, leading to
amplified flood damage claims when wetlands are developed. Lower elevations
increase susceptibility to flooding due to proximity to water bodies and reduced
drainage capacity, making wetlands in these areas crucial for flood mitigation.
Shallow water tables make the land more prone to saturation, where wetland loss
disrupts natural water storage capacity, further escalating flood risks. Proximity
to shorelines exposes areas to storm surge and tidal flooding, where wetlands act
as essential buffers. Wetland development in these regions removes this natural
defense, intensifying flood vulnerability.

Land use patterns further explain the heightened flood risks in areas with
greater wetland services. Developed and agricultural areas rely heavily on wet-
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Figure 8. : Spatial heterogeneity of CATEs using multimodal model Note: The mul-
timodal causal framework effectively captures fine-resolution heterogeneity by incorporating site-specific
characteristics, such as land cover, flood risk, and property values. This granular analysis supports more
precise and targeted conservation planning.

lands for stormwater management, and their development increases surface runoff
and flood damages. Forested and vegetated wetlands serve critical roles in ab-
sorbing water, reducing surface runoff, and slowing floodwaters. Their loss dimin-
ishes these protective functions, leading to heightened flood impacts. Similarly,
high and moderate-risk flood zones are naturally prone to flooding, and wetland
development removes crucial barriers that could otherwise reduce damages. Col-
lectively, these geographic, economic, and land use factors highlight the critical
role of wetlands in flood protection and emphasize the amplified risks associated
with their development in vulnerable regions.

Together, these findings illustrate how property values, land cover, geographic
features, and flood zone classifications interact to create complex spatial hetero-
geneity in wetland benefits, underscoring the importance of multimodal analyses
to capture these dynamics fully. Traditional tabular models alone cannot ade-
quately account for such intricate relationships, highlighting the value of inte-
grating diverse data sources in environmental impact studies.
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C. Robustness

This section is under development. Our results demonstrate robustness across
a range of model specifications. We validate the Average Treatment Effect (ATE)
using the R-Learner framework by comparing it with the outcomes of an upstream-
downstream natural experiment analyzed through a differences-in-differences ap-
proach described in Section II.D. The estimated ATE falls within the range
reported in previous studies (Taylor and Druckenmiller, 2022). Additionally, we
will show that the results remain consistent across various parameter settings.

IV. Discussion and Policy Implications

This study presents a significant advancement in accurately valuing wetland
benefits for flood mitigation by integrating state-of-the-art methodologies from
computer vision and causal inference. Using our multimodal causal framework,
which combines Vision Transformer-based image embeddings with the R-Learner
framework, we overcome the limitations of traditional tools designed for tabular
data analysis. Existing approaches, while effective at modeling localized ecosys-
tem services, often fail to capture the richness and complexity of multi-modal
data. Our approach addresses this gap, enabling a detailed examination of the
spatial and economic heterogeneity in wetland benefits.

Traditional benefit-transfer methods, which apply generalized estimates to new
contexts, are often unreliable due to their inability to account for local geographic
and socio-economic conditions. In contrast, our framework produces spatially
resolved, site-specific valuations that enable policymakers and resource managers
to make more informed decisions. For example, areas with high exposed property
value, lower elevation, and proximity to flood-prone zones benefit the most from
wetland conservation. With these insights, resource managers can compare the
flood protection services of different wetlands and prioritize those with the highest
potential to reduce flood damages. Moreover, by integrating heterogeneous data
sources, our framework allows for a more nuanced understanding of ecosystem
services that extends beyond simple tabular analyses.

While this study focuses on wetlands in Florida, our framework is versatile
and generalizable to other regions and applications. It could be used to evaluate
ecosystem services globally wherever rich multimodal datasets are available. For
example, in agricultural regions, the framework could assess the impact of forest
loss on crop yields by considering how forests regulate local microclimates, such
as water cycles and solar radiation. Similarly, in urban areas, it could quantify
the cooling effects of urban greening projects, such as trees and green roofs, on
reducing extreme heat events, which are linked to mortality and morbidity. By
identifying the most effective locations and strategies for ecosystem conservation,
our framework provides a robust tool for optimizing environmental policies and
investments.

Our findings show that incorporating image-based data and spatial variables
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significantly enhances the ability to capture heterogeneity in ecosystem services.
The RATE ratio, which quantifies the ability to target high-benefit regions, in-
creased from 0.09 in the tabular model to 0.23 in the multimodal case. Addi-
tionally, the average per-hectare value of wetlands ranged from $185.73 in the
tabular model to $195.29 in the multimodal model. Importantly, the multimodal
framework uncovered heterogeneous benefits of wetlands, with maximum CATE
values translating to monetary benefits as high as $512.65 per hectare.

These results provide policymakers with more accurate and actionable data to
inform conservation decisions. By prioritizing wetlands with the highest flood mit-
igation benefits, resource managers can ensure that conservation investments yield
maximum societal returns. Moreover, our framework advances the methodologi-
cal literature in causal inference by addressing challenges related to continuous,
spatially structured covariates.

In conclusion, this study underscores the transformative potential of spatially
explicit and multimodal frameworks for environmental decision-making. By pro-
viding quantitative, credible estimates of wetland benefits, our framework lays the
groundwork for more reliable cost-benefit analyses at local, regional, and global
scales. Policymakers can use these insights to guide conservation efforts, optimize
resource allocation, and mitigate the impacts of climate change and environmen-
tal degradation. This study marks an important step toward a future where
ecosystem services are valued with the rigor and precision necessary to support
sustainable development and human well-being.
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